A generic framework for adaptive EEG-based BCI training and operation
نویسندگان
چکیده
There are numerous possibilities and motivations for an adaptive BCI, which may not be easy to clarify and organize for a newcomer to the field. To our knowledge, there has not been any work done in classifying the literature on adaptive BCI in a comprehensive and structured way. We propose a conceptual framework, a taxonomy of adaptive BCI methods which encompasses most important approaches to fit them in such a way that a reader can clearly visualize which elements are being adapted and for what reason. In the interest of having a clear review of existing adaptive BCIs, this framework considers adaptation approaches for both the user and the machine, i.e., using instructional design observations as well as the usual machine learning techniques. This framework not only provides a coherent review of such extensive literature but also enables the reader to perceive gaps and flaws in the current BCI systems, which would hopefully bring novel solutions for an overall improvement.
منابع مشابه
Machine-Learning Based Co-adaptive Calibration: Towards a Cure for BCI illiteracy
Brain-Computer Interfaces (BCIs) allow users to control a computer application by brain activity as acquired, e.g., by EEG. In our classic Machine Learning approach to BCIs, the participants undertake a calibration measurement without feedback to acquire data to train the BCI system. After the training, the user can control a BCI and improve the operation through some type of feedback. However,...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملEEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures
Motor imagery is a common control strategy in EEG-based brain-computer interfaces (BCIs). However, voluntary control of sensorimotor (SMR) rhythms by imagining a movement can be skilful and unintuitive and usually requires a varying amount of user training. To boost the training process, a whole class of BCI systems have been proposed, providing feedback as early as possible while continuously ...
متن کاملA New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition
A Brain-Computer Interface (BCI) is a setup permitting the control of external devices by decoding brain activity. Electroencephalography (EEG) has been extensively used for decoding brain activity since it is non-invasive, cheap, portable, and has high temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs based on EEG can require extensive training and mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.07935 شماره
صفحات -
تاریخ انتشار 2017